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LETTER TO THE EDITOR 

The ‘active perimeter’ in cluster growth models: a rigorous 
bound 

Frangois Leyvraz 
Center for Polymer Studies and Department of Physics, Boston University, Boston, 
Massachusetts 02215, USA 

Received 9 August 1985 

Abstract. A definition of an ‘active perimeter’ is introduced for arbitrary cluster growth 
models. A general bound is derived, showing that this perimeter cannot grow faster than 
Rdr-’, where d ,  is the fractal dimension of the cluster. For diffusion-limited aggregates, 
this is seen to be smaller than the ‘growing interface’ as defined by Meakin and Witten. 
A further consequence is that the Eden model is fully compact in any dimension d, i.e. it 
has a negligible number of internal holes. Further one finds that its perimeter scales as 
(voIume)‘d-’”d 

Models for cluster growth have recently attracted a great deal of interest, in particular 
due to their ability to generate complex, highly ramified, ‘fractal’ structures (for 
references see, e.g., Family and Landau 1984). For such a phenomenon to occur, it 
is necessary to have some form of screening, so that the growth process does not 
eventually fill in all the large-scale voids present. As a consequence, attention has 
focused on the so-called growing interface (Meakin and Witten 1983), i.e., that part 
of the cluster where growth principally occurs. Meakin and Witten (1983), in particular, 
have given the following definition of the growing interface for diffusion-limited 
aggregation. Let first a cluster of N sites be grown, after which it is further grown for 
an arbitrarily long time. The growing interface is the set of these points put down in 
the first N steps that are adjacent to at least one point put down after the first N steps. 

It is the purpose of this letter to introduce another definition of ‘active perimeter’, 
for which rigorous bounds can then be derived. It will be seen that the ‘active perimeter’ 
of diffusion-limited aggregates (DLA) is much smaller than the interface defined by 
Meakin and Witten (1983). However, for models such as the Eden model (Eden 
1961, Sawada et a1 1982, Rikvold 1982), this ‘active perimeter’ actually scales as the 
total perimeter. 

A cluster growth model starts as a fixed cluster, typically a seed, to which adjacent 
sites are added one at a time according to certain probabilities. If x denotes a point 
adjacent to the cluster at time N (i.e., when the cluster has N sites), then the 
(normalised) probability that x will be added to the cluster at time N + 1 is defined 
to be r N ( x ) .  For the case of fractal growth it is well known (Turkevich and Scher 
1985, Halsey er a1 1985), that the growth probabilities r N ( x )  vary sharply as a function 
of position. In particular, only a very small portion of sites have a growth probability 
comparable to the maximum growth probability. To obtain an approximate measure 
of the number of such sites, let the active perimeter of a growth model be defined as 
follows: give each site x a weight measuring its growth probability with respect to the 
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maximum growth probability. The active perimeter at time N, PN, is then the sum of 
these weights, or put differently: 

The fundamental result I wish to derive is the following: for any cluster growth 

(2) 

where RN is a length of the order of the radius of gyration of the cluster at time N 
and C" is a constant. 

To prove this, consider the convex hull of the cluster, i.e., the smallest convex set 
containing the whole cluster. To construct this set, connect every point on the cluster 
with every other by a straight line (or by the corresponding set of points if the cluster 
is on a lattice). The resultant set is not a fractal, but a convex set bounded by a 
polyhedron. It has, therefore, a well defined area and volume. Let VN be the volume 
of the convex hull at time N, and let S N  be its surface. Since the convex hull has no 
interior holes and is bounded by a regular surface, one has SN a R$' and VN a R ; ,  
where RN is a typical cluster radius. This assumes, of course, that there are no two 
directions growing at infinitely different rates, since in this case one could not express 
S N  and VN in terms of one length only. 

For any cluster point x on the boundary of the convex hull, define S ( x )  as the 
surface of all ( d  - 1)-dimensional faces of the hull adjacent to the vertex x. If a is 
the lattice spacing, then clearly the increase in volume due to the cluster growing at 
x from time N to time N + 1 is 

process, for N sufficiently large: 

PNI N S C t t /  RN, 

A V ( x ) a  a S ( x ) ,  

and hence the average rate at which VN increases, summing over all vertices x on the 
boundary of the convex hull, is given by 

where C is a constant, containing a factor of d to account for multiple counting of 
( d  - 1)-dimensional faces on the sum over x. This now leads to 

But since one has 

N =S VN S constant Nd, ( 5 )  

it follows that, taking RN to be V N / S ,  as mentioned above: 

or, if RN and PN have a well defined asymptotic power-law behaviour 

PNI N d C"/  RN. ( 6 b )  

Now consider some of the consequences of this inequality. The (site) Eden model is 
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characterised by the fact that all r N ( x )  are identical, i.e. they do not depend on x. 
From this follows immediately that PN is in fact proportional to the total (external 
and internal) perimeter. This is, however, equally true of a considerable class of other 
models (Rikvold 1982, Sawada et al 1982, Meakin 1983) some of which appear fractal 
over a large range of length scales. For all these models it is readily seen that v N ( x )  
never varies by more than a constant factor, i.e. 

O <  C ~ ~ T N ( X ) / T N ( X ' ) ~  C2, (7) 

for any N, x and x' .  From inequality ( 6 )  it follows immediately that the Eden model 
and its variants are compact in any dimension (Richardson 1973), i.e. it does not 
contain a finite fraction of voids. This follows from the inequality, since only a 
vanishingly small portion of sites are connected to an empty site. This, however, leads 
to Ncc Rd and hence, again by inequality (6) 

PN s CRd-' N (8) 

which implies PN ot Rk-', since the total perimeter cannot be less than constant Rd-'. 
Further, it is clear that the external perimeter, say, cannot be a fractal object, since it 
scales at the most as Rd-'. 

For diffusion-limited aggregates (Witten and Sander 1981), PN defines a new 
concept of 'active perimeter'. Inequality ( 6 )  can be rewritten as 

PN s C"R$.!-', (9) 

where df is the fractal dimension of the aggregate. Since no site on the boundary of 
the convex hull can screen another site on the boundary of the convex hull from the 
diffusing field, one can assume all v N ( x )  to be comparable for x on the convex hull. 
This implies that PN actually scales exactly as Rdr-', as was independently pointed 
out by Turkevich and Scher (1985). 

The growing interface as defined by Meakin and Witten (1983), however, scales 
as Rd-'-where d is the space dimension-for d = 2, 3. Analytical work (Carleson 
1985) seems to confirm this result for d = 2 .  This means that the active perimeter as 
defined above is a vanishingly small portion of the growing interface. This indicates 
that among all of those original sites at which growth will occur at some later time, 
there are only very few which have a growth probability comparable to the maximal 
growth probability. This is a confirmation of the empirically well known fact that a 
small minority of points is most active during growth, while the others' growth is 
quickly stunted. This result may be compared to the appearance of 'forgotten growth 
sites' in the growth models studied by Bunde et al (1985b). 

It may be worthwhile to point out that the inequality derived by Ball and Witten 
(1984) can be rederived using the above inequality. This is hardly surprising, since 
the argument involved in both proofs is very similar. For this purpose, it is sufficient 
to show that a walker has a finite probability of hitting a site on the boundary of the 
convex hull, since this implies, in the general case where the walk has dimension d,: 

d f -  1 3  d -d, (10) 
which is the desired result. To prove this, we remark that the probability of hitting a 
site on the boundary of the convex hull is roughly the number of sites on this boundary 
multiplid by the maximal growth probability, since all these sites are unscreened. But 
the number of cluster sites on a regular surface scales as Rdf-' and the maximal growth 
probability scales as R-(df-'), thus completing the proof. 
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For percolation clusters a result can be obtained as follows: a percolation cluster 
can be grown by starting from a seed, choosing a perimeter site at random and then 
occupying it with probability pc  and blocking it with probability 1 - p c .  This algorithm- 
together with variations-was proposed originally by Leath (1976) and Alexandrowicz 
(1980). As a growth process it has been extensively studied by Bunde er a1 (1985a). 
Clearly PN for this algorithm corresponds to the number of ‘growth sites’ G as defined 
by Bunde er a1 (1985a), i.e., the number of occupied sites adjacent to an empty 
unblocked site. Defining dG by 

GE R ~ G ,  

it follows from (6) that 

dGS df-1, (11) 

where df is the fractal dimension of percolation clusters. This is confirmed by the 
numerical results of Bunde et a1 (1985a) in two dimensions, where dG = 0.76 * 0.02 
with d f =  1.89. The inequality (11) can, however, be violated if correlations are intro- 
duced, as was also investigated by Bunde er al (1985a). For example, in the case 
where the probabilities r N ( x )  depend upon the distance between x and the site chosen 
at time N-1 ,  if short distances are strongly preferred, the large probabilities are 
entirely concentrated on a very small set, so that Phi is of order one independently of 
N. The inequality (6) then becomes vacuous and inequality (11) does indeed fail. 

Summarising, a definition for the active perimeter of an arbitrary cluster growth 
process has been given and a general upper bound for it has been derived. This bound 
is, in essence, a generalisation of the fact that for solid objects the surface to volume 
ratio goes to zero as the inverse radius. Applied to the Eden model and the related 
Rikvold and SOYH (Sawada et al)  models it yields the fact that these models are 
compact and their perimeters are (d  - 1)-dimensional. Applied to diffusion-limited 
aggregates it gives support to the empirical fact that only a small minority of points 
on the growing interface are growing very actively and provides a simple proof of the 
Ball-Witten inequality for the fractal dimension of DLA. There are presumably many 
more such applications. 
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